Blog Archives

Are women part of mankind?

The ‘leaky pipeline’ has been in the press again thanks to the now infamous Google staff memo  and the BBC2 programme about ‘no more boys and girls’. Adapted from her original article in the Journal of Science Communication, Laura Fogg-Rogers considers what this has to do with science communication.

To boldly go where no (one or man?) has gone before…

As a science geek growing up in the 1980s, I wasn’t aware of the cultural idea that women who did STEM were considered to be strange. It turns out that this was in fact the tail-end of the gender-neutral movement and indeed I attempted to live my life by the idiom, “To boldly go, where no one has gone before”. It wasn’t until my late childhood that I realised that this was a ‘politically-correct’ adaptation of the original 1960s Star Trek catchphrase, which urged us “To boldly go, where no man has gone before”. It is a subtle word change, but a whole new world of meaning for a little girl with big hopes.

Of course, I have since been thrown out of my utopia and metaphorically crashed into the societal expectations waiting for both myself and my two children (a girl and a boy). Gender roles, expectations, and futures are reinforced in society through multiple interactions every day. Right from day one, girls are given pink dolls and soft teddies, and boys are given loud cars and construction tools. Going against the grain takes exceptional tenacity and strength of character, or perhaps a blinkered view of social norms. This is why we still consider it unusual for men to become nurses or nannies, or women to become mechanics or soldiers (or neurosurgeons in this video).

Is STEM socially acceptable for women?

Humans are social creatures, and more than anything, most of us want to fit in. It is therefore common sense that the things which we see others doing around us, are the things which we want to copy or be part of. The psychologist Albert Bandura termed this ‘social cognitive theory’ (previously social learning theory). This explains how an individual’s learning is not only related to their personal capabilities and experiences, but also by observing others; this can be through social interactions, life experiences, or outside media influences.

Projects like Inspiring the Future show how far we have to go. It is why we specifically recruited women into our Robots vs Animals project to give a 50/50 gender representation, even if it proved controversial . Fundamentally, if girls don’t see women being received positively in STEM roles, then they will never think that STEM is a ‘normal’ thing for women to do.

You can’t be what you can’t see

I therefore argue that if we wish to influence whether it is considered socially acceptable for women to take part in STEM, we need to change the representation of STEM, scientists, and engineers in all aspects of society. The saying goes that ‘it is the straw which broke the camel’s back’, and so it is the everyday ‘microaggressions’ which I believe can make the most difference. We are all responsible for reinforcing gender norms and behaviours, and so we can all make an effort to change!

  1. Try to use gender neutral language where possible e.g. firefighter instead of fireman, police officer instead of policeman etc. And don’t be afraid to speak up and challenge others if they state what boys and girls can do, even in everyday social situations.
  2. Use the pronoun ‘she’ instead of ‘he’ in stories or descriptions of professions. You’ll be surprised about how odd it sounds (which says a lot…)!
  3. Show pictures of women as the active archetype, instead of a passive bystander. For instance, in a presentation about what engineers do, simply showing a picture of a woman being an engineer is very powerful (you don’t even have to mention that she is a woman).
  4. Support projects like the Hypatia Project to improve science capital for girls and families from socially deprived areas.
  5. Support projects in the workplace to tackle pay disparity and employment rights, such as the Athena Swan project in higher education.

If we all work together, maybe we really can reach a future where we can ‘boldly go where no one has gone before’!

Laura Fogg-Rogers

Science Journalism Summer School 2017

Every two years, the Association of British Science Writers (ABSW) hosts its one-day Science Journalism Summer School. The 2017 event took place on 5 July at the Wellcome Trust in London, and I went along as a budding freelance science writer to learn a few tricks of the trade.absw-logo

I was joined by 135 other delegates on the airy and light sixth floor of the Trust’s superb glass-fronted Euston Road building on one of the hottest days of the year. With me were undergraduates, PhD students, freelancers of many kinds, and established science journalists working for a range of organisations. Oh – and a colleague (Clare Gee) from my Masters course in Science Communication here at UWE! Billed as a 12-hour working day, I indeed arrived for coffee at 9am, and did not depart until 8.30pm after the superb networking session with commissioning editors from a number of science publications, such as New Scientist.

BBC Science Correspondent Pallab Ghosh opened the proceedings, and the format for the rest of the day followed short talks with panel discussion and audience Q&A. We learned about new media trends, particularly around digital news consumption, in the context of the question ‘Where have all the science correspondents/journalists gone?’. ITV’s Science Correspondent Alok Jha extolled the virtues of critical science journalism in the fake news world, asserting the need to communicate conflicts between scientific researchers and cast more light on the imperfections and uncertainties of the scientific endeavour. That doesn’t sit so easily with being a proponent of science, which most of us are.

A session on pitching skills was most revealing, with commissioning editors suggesting that they aren’t receiving enough news pitches (short 250-word pieces) alongside the veritable flood of feature pitches. They were keen to point out that background was largely irrelevant; if the story was good and the source reliable, they’ll take it. And one particularly good tip to remember is that editors often prefer to receive a ‘phonecall, with e-mail used as the follow-up.

The session on investigative reporting left a sense of how good for society the best journalism can be, despite the challenges around funding this type of work in today’s climate. Given the potential risks, freelancers were generally advised to steer clear of investigative reporting!

Cycling science logoPerhaps the highlight for me was the final session on “successful freelancing”. There were personal testimonies of the struggle to get going, to find sources of work, to carve out a niche area of specialisation. Max Glaskin, the successful, award-winning author of the magazine Cycling Science, offered a tremendous insight laced with some dark humour along the way. His successful writing career has allowed him to diversify his sources of income through giving talks, chairing panel discussions and undertaking specialist scientific consultancy.

All-in-all, a long but rewarding day, worth every penny. If you want to meet several commissioning editors in one place at one time and establish relationships, then this biennial Summer School is a good investment of your time and money.

You can read my blog, Sykes on Science, at: www.sykesonscience.wordpress.com

Ben Sykes, MSc Science Communication student, UWE

Be visible or vanish

binoculars-1015265_1920

After Cristina Rigutto’s informative seminar on post-publication digital engagement, we asked for her advice about blogging and how to increase our visibility online. Cristina reminded us that a key element of an academic’s profile is their digital footprint (including blogposts, Twitter feed, Instagram and webpages) – but to be effective in communicating your research online, you need people to find and follow you. We’ve all spent time trying to track people down online, sifting through a myriad of content – so how can you raise your profile to let people know you’re out there beavering away?

  • You need to be found on Google, the best way to do this is to create a Google Scholar profile. The profile can include all your output, not just peer reviewed content.
  • Put your presentations on Slideshare (one of the 10 most viewed sites in the world) it connects to Microsoft and LinkedIn.
  • Set up a YouTube channel in your name.
  • Wikipedia. – whilst Wikipedia is notoriously difficult to add content to you can easily insert a reference to your paper/ presentation into an existing page about your topic.
  • WordPress – put all the information about yourself in one place that then links out to your Twitter profile, Instagram account, blog etc.

It may not be practical to utilise all of these but any one will bump you up the list and help people connect with you.

Tips for academic blogging

BlogAn increasing number of academics are using blogs to reach a wider audience and share their research in a more comprehensible way. However, a staggering 81% of people will only read your first paragraph (71% the second, 63% the third and 32% the fourth, you get the idea if you’ve read this far…).

So the opening paragraph needs to contain your key message and words (detail can follow in subsequent paragraphs):

  • Keep to 300-750 words.
  • Repeat key words and their synonyms.
  • Use links inside the post including internal links to other posts.
  • Use lists as often as possible (see what we did there!) – a search engine reads html tags and will place your post higher on the results page.
  • Tweet a lot about the post – most people only catch a snapshot of the content on their twitter feeds, give your post a chance by shouting about it frequently!
  • Send as a Direct Message to anyone who may be interested – you don’t need to ask them to share it, you can just ask their opinion and often they will share your content anyway.

So there you have it, once you’ve set up your digital presence it is relatively easy and not too time consuming to maintain, build it into the everyday activities you carry out as an academic!

Jane Wooster and Kate Turton

 

Never say never again…

After my PhD viva in 2004, I promised myself I’d never again study for a qualification. Having gone straight from A-levels through a degree to a doctorate, I felt as if I just couldn’t learn anything more. But a decade later, I found myself at a career crossroads trying to figure out what to do at the end of my maternity leave.

Inspired by my elder daughter’s curiosity, I set up a blog, Simple Scimum, to answer questions about science and nature. Slowly, as the blog gathered followers, my confidence grew; and when one of my daughter’s friends asked if I would answer her science questions too, I knew I had to turn science writing into something more than a hobby.

I began searching for jobs that involved writing about science and quickly realised that a qualification in science communication would be an advantage. So, I googled ‘sci comm Bristol’ and found UWE’s MSc in Science Communication, which sounded brilliant but was more than I could manage whilst working part-time and looking after two young children. However, the Postgraduate Certificate in Practical Science Communication was exactly what I was looking for: a one-year, part-time course with intensive teaching blocks, offering hands-on experience and links to industry. I applied for the September 2016 intake and won a bursary towards my tuition fees: I was going back to university!

I felt nervous about returning to study after such a long break but I knew that this was just the first step along a new career path.

The ‘Writing Science’ module was an obvious choice, with the opportunity to create a magazine and develop a portfolio just too good to miss. I learned the essential elements of journalistic practice and wrote a bylined article for UWE’s Science Matters magazine. But the real highlight was a three-hour workshop on ‘how to write a book’ – I’d love to write science storybooks for children, and came away bursting with ideas, enthusiasm and an action-plan to turn my dream into reality. (Roll on NaNoWriMo…!)

But it was through the ‘Science in Public Spaces’ module that I discovered just how strongly I want to inspire young children and engage them with research. I designed ‘Simon’s Box’ to talk about genetic disease and genome editing with GCSE pupils in local schools. And I had the best time in the Explorer Dome learning about science shows for young audiences. Seeing how to encourage children to learn through stories and play was a fantastic experience and a seminal moment in my desire to become a science communicator.

At times I found it hard to juggle study, work and childcare but the intensive teaching blocks made it easier for me to attend lectures and workshops. I paid for my younger daughter to go to nursery for an extra morning each week and used that time for reading and research. Still, I often found myself studying between 8pm and 10pm, when the kids were tucked up in bed, and I was grateful for 24-hour online access to UWE’s library facilities. But now the hard work is over and I’m just waiting for my final results.

Over the past year, I’ve been part of a supportive cohort of students who are committed to science communication. I’ve developed the confidence to pursue a new career path and given up my old job to become a Research Fellow in UWE’s Science Communication Unit. Before the PGCert, I dreamed of working in science communication but now I’m actually doing it.

Kate Turton

Thinking inside the Box(ED)

Watching scientists pitching their research projects felt like being in an episode of Dragons’ Den. I sat among a group of fledgling science communicators, tasked with choosing a project to develop into a school science activity. My first assignment as a new student, freshly enrolled on the UWE PGCert in Science Communication, was to create an activity suitable for UWE’s BoxED scheme!

dna-163466_1280I was paired with Gabrielle Wheway, who studies DNA to understand how mutations in genes alter their function and was awarded a prize for her research on retinitis pigmentosa, an inherited form of blindness. We met over coffee to discuss how I could design a hands-on activity that would communicate an aspect of Gabrielle’s research1 to a secondary school audience within a 45-60 minute session in a classroom environment.

Retinitis pigmentosa (RP) is caused by mutations in the genes that control vision. Most people with RP are born sighted but experience gradual, progressive deterioration of vision as they grow older. Symptoms can begin at any age and there is no way to predict how quickly the condition will progress.eye Early signs include difficulty seeing at night and tunnel vision, followed by loss of colour and central vision. Gabrielle mentioned the charity RP Fighting Blindness and I contacted their local support group to learn more about the disease and what it is like for people living with RP.

Over the next few weeks, I started to formulate an idea: my Box would draw on lived experiences of RP and build on four themes in the National Curriculum for Biology at Key Stage 4 (i.e. non-communicable diseases; gene inheritance; impact of genomics on medicine; and uses of modern biotechnology and associated ethical considerations). It would be targeted towards students in Year 10, who could bring in broader perspectives from other GCSE subjects, such as ethics, religious studies or philosophy.

The people from RP Fighting Blindness had shown me some glasses that simulate a type of visual deterioration common in RP. I decided that my aRP Fighting Blindnessctivity would involve experiencing what it feels like to have an altered field of vision. I also wanted to establish a personal connection, and found a short film about being diagnosed with retinitis pigmentosa. Finally, I thought about genes as units of inheritance and how they are passed from one generation to the next. Under the working title “Simon’s Box”, my activity looks at genetics and inherited disease using RP as a case study.

Designing a BoxED activity has been an enjoyable experience. I’ve learnt about the National Curriculum for science, researched good practice in designing exhibitions at Science Museums, and delved into learning styles and education theory. I’ve rediscovered a personal interest in genetics and human biology, and developed something of an affection for RP. And I’m delighted that we are now getting ready to roll it out to local schools and festivals. So, if you’re planning to attend the Festival of Nature or Cheltenham Science Festival in June, come along to the UWE BoxED stand and try out some of our hands-on science activities!

Kate Turton

1Gabrielle’s research is funded by Wellcome Trust and National Eye Research Centre

Science communication: people, projects, events 2017

Our Science Communication Masterclass has been running very successfully for quite a few years now and like my colleagues, I’ve had happy times running workshops, and met some really interesting participants. But we were never able to squeeze everyone in who wanted to come, while others were unable to travel to the UK.

We decided to meet this challenge by creating an online professional development Unit 1 SCPPEcourse – Science communication: people, projects, events – targeted at people who wanted to develop their skills and knowledge of science communication. Participants have joined us from far and near: across the UK, from Uganda, Switzerland, Portugal, Australia, Brazil, Canada and more.

They’ve been a real mix: recent science graduates, museum professionals, communications people, people working in institutions, large corporations, small businesses and start-ups. Some have experience of public engagement but for some, the course opens a new horizon:

… in my heart I believe I found a new passion – science communication!

We ran the first course in 2015. Naturally, as good public engagement practitioners, we ask the participants to reflect on and evaluate the course each time it is presented and we have used their feedback to refine and develop the course.

In the first year, participants felt that the time demands were a little onerous for people working full-time, so in 2016 and 2017, we built in two study breaks to allow participants to draw breath and catch up on content they might have missed. Unfamiliar tools caused some puzzlement, so we created micro-videos to show participants how to use forums, wikis and other learning tools. We also created a special LinkedIn group for course ‘graduates’ because participants really wanted to maintain the relationships that develop:

It would be great to be able to keep in touch with fellow participants and tutors.

The course now runs in eight units over ten weeks, with one or two members of the SCU tutoring each unit. In 2016 and 2017, I led the course from my current base in Perth, Western Australia. One of the virtues of working online: on the Internet, no one knows you’re on the beach!

Ann SCPPEWe present the course materials using a mixture of guided self-directed learning activities, reading, narrated presentations, forums, wikis, vlogs and online seminars. Other than the seminars, participants are able to fit their engagement around their work and other commitments. Participants like the variety of methods:

forums: an ‘excellent way to discuss ideas despite not meeting other coursemates in person

webinars: an ‘opportunity to put voices to names’ and ‘a great experience

wikis: ‘pushed [me] to develop an idea for a project’ and get ‘lots of feedback and input from other participants and the tutors

The online environment offers us so many opportunities to reach out to scientists, science communicators and public engagement people around the world and welcome them to the SCU family. In 2016, we created a companion online course focussing on Online and Media Writing, which is currently in its second presentation.

Feedback from this year’s participants is still being reviewed but I’m sure it will give us food for thought and ways to improve. We hope we’ll be welcoming lots more participants in 2018!

Please visit our website for further details of our online courses.

Ann Grand

 

FET Award: STEM outreach at Luckwell Primary

This year, I have been lucky enough to receive a FET Award to promote STEM at a local primary school in south Bristol. Our key aims have been to use the expertise of UWE staff and students to deliver events which not only encourage children to pursue STEM careers, but also support teachers with some of the harder to achieve National Curriculum objectives.

Our first activity involved all students in Key Stage 2 – 120 in total. Inspired by the LED cards on Sparkfun, and ably assisted by fellow FARSCOPE students Hatem and Katie, we ran a lesson in which students used copper tape, LEDs and coin cell batteries to create a light-up Christmas tree or fire-side scene. Our aim was not only to show the students that electronics is fun and accessible, but to re-reinforce the KS2 National Curriculum objectives relating to electricity and conductivity.

Although a little hectic, the students really enjoyed the task and the teachers felt that the challenge of interacting with such basic components (as opposed to more “kid friendly” kits), really helped to drive home our lesson objectives.

To re-reinforce the Christmas card activity, we also ran a LED Creativity contest over the Christmas break. Students were given a pack containing some batteries, LEDs and copper tape and tasked with creating something cool.

Entries ranged from cameras with working flash  to scale replicas of the school. The full range of entries and winners can be found here. Overall, we were blown away by the number and quality of the entries.

Our second focus was introducing students to programming. To this end, we have been running a regular code club every Monday, this time supported by volunteers from UWE alongside FARSCOPE student Jasper. In code club, we use a mix of materials to introduce students to the programming language scratch. We currently have 16 students attending each week and recently were lucky enough to receive a number of BBC Micro bits.

Alongside Code club, we also ran a workshop with the Year 5 class, to directly support the national curriculum objectives related to programming. Students were given Tortoise robots (Built by FARSCOPE PhD students, in honour of some of the very first autonomous robots, built in Bristol by Grey Walter). Children had to program and debug an algorithm capable of navigating a maze.

As the outreach award comes to an end, we are planning a final grand event. Each year the students at Luckwell School get to spend a week learning about real-life money matters in “Luckwell Town”. During this week, students do not attend lessons – instead, they can choose to work at a number of jobs to earn Luckwell Pounds. This year, we will be supporting Luckwell Town by helping to run a Games Development studio. Students will use Scratch to design and program simple games for other students to play in the Luckwell Arcade.

IMG_3714

As with our prior events, the success will depend on volunteers from UWE donating their time and expertise to support us.

Luckwell Town will take place every morning of the week commencing June 12th. We are looking for volunteers to support us, so please respond to the Doodle poll if you are interested.

Martin Garrad, PhD student in robotics

Researching images on social media – nuts and bolts

Images and videos are pervasive online, these days, web articles include at least one image or video. On Twitter, Facebook and Snapchat these visual contents are even more common, and social media platforms such as YouTube, Vimeo, Vine, Instagram, and Pinterest are entirely dedicated to their sharing.

screw-mother-metal-iron-60060

Images can emphasise textual messages, or even convey a message without text at all (Hankey et al., 2013), and they can increase the visibility of a tweet and how often it is shared (Yoon and Chung, 2013). There are so many images on social media that these platforms have become picture databases, and these have become subject to research. For example, Vis et al. (2013) explored images production and sharing practices on Twitter during the UK riots in 2011; Tiggemann and Zaccardo (2016) analysed Instagram images related to the #fitspiration movement, addressing their potential inspiration for viewers and negative effects on viewers’ body image; and Guidry et al. (2015) investigated the content and the engagement of pro- and anti-vaccine images shared on Pinterest.

My Ph.D. research uses one of these databases – it focuses on vaccine images used for advocacy that are shared on Twitter. Sourcing the images that are my data may sound simple, after all, I only need to download my data from Twitter, right? However, it is rather more complex than that. To start with, there are many different communities on Twitter, and they share images on a range of different topic. They may also share images on the same topic from different angles; for example, if we search #health on Twitter, we will see pictures related to healthy food, obesity, fitness, losing weight, public health policy, etc. So, the biggest challenges are how to find the communities of interest and then to develop a data analysis strategy that uncovers how they use their pictures.

To help me narrow the potential field of image research for my PhD, I asked the following questions:

  1. What topic am I interested in? Which communities do I want to study?
  2. Which social media outlets would I find most interesting/useful for my research?
  3. Each social media platform is used by different audiences, so it is important to think about the overall question we are asking. For example, young adults use Facebook, whereas teenagers prefer Snapchat, and Chinese people may be on Weibo.
  4. Where are these communities from? Which language(s) do they use?
  5. If we focus our research on Europe, we have to take into account that Europeans speak different languages. If we focus on English language, we have to consider that our images will come from all over the world, but especially from the US, UK and Australia.

Afterward this initial sifting, I had more questions to answer:

  1. What keywords should I use to search on my chosen social platform (in my case, Twitter)?
  2. Each topic and each community has its own “slang” or “dialect” and therefore keywords. On Twitter, for example, users in favour of vaccinations tweet their content including the hashtag #vaccineswork, whereas people against vaccines use mainly the hashtag #vaxxed and/or #CDCwhistleblower.
  3. How can I find the relevant keywords?
  4. Previous research on social media can suggest some terms; in my case, keywords such as vaccine(s), vaccination(s), vaccinate(d) and immunes(z)ation (Love et al., 2013; Salathé et al., 2013). Searching for these generic words, I found both tweets with and without hashtags that talked about vaccines. However, some communities use specific keywords which may not include these terms (e.g. #vaxxed) and they may use these keywords to label their tweets as relevant to the topic. For example, a tweet claiming “They’re poisoning our children #CDCwhislteblower” and showing an image with a child whilst being vaccinated, would be relevant to vaccinations even if it did not mention “vaccine” or “vaccination”. This tweet would not appear in my research if I set my data collection using only generic words, thus I needed to search for relevant hashtags as well.
  5. How do I find relevant hashtags?
  6. A first step would be considering which hashtags previous studies used, then searching Twitter for generic hashtags and see which other hashtags people use. There are also some online tools that can be helpful, such as Hashtagify.me, Get Tags and RiteTag.com. These online software packages suggest correlated hashtags and their popularity.

Answering these questions helps us define the criteria for data collection, but they also show how complicated research on images shared on social media is. As with any data collection method, planning, defining and developing are key for research drawing on online images. We need to be able to justify the approach we took and show that the data collection process is robust. This means, as with many other types of data collection, that we need to pilot and test our data collection methods ensuring that they deliver the material we anticipate and which will validly help us to address our research question. There are so many pictures online, uploaded, downloaded, edited and shared, that the choice of image collection methods becomes key to ensuring the quality of the study overall.

 

Elena Milani

 

References

Hankey, S., Longley, T., Tuszynski, M. and Indira Ganesh, M. (2013). Visualizing Information for Advocacy. Nederlands: Tactical Technology Collective.

Love, B., Himelboim, I., Holton, A. and Stewart, K. (2013) Twitter as a source of vaccination information: content drivers and what they are saying. American Journal of Infection Control [online]. 41(6), pp. 568-570.

Guidry, J.P., Carlyle, K., Messner, M. and Jin, Y. (2015) On pins and needles: How vaccines are portrayed on Pinterest. Vaccine [online]. 33(39), pp. 5051-5056.

Salathé, M., Vu, D.Q., Khandelwal, S. and Hunter, D.R. (2013) The dynamics of health behavior sentiments on a large online social network. EPJ Data Science [online]. 2(1), pp. 1-12.

Tiggemann, M. and Zaccardo, M. (2016) ‘Strong is the new skinny’: A content analysis of #fitspiration images on Instagram. Journal of Health Psychology [online].

Vis, F., Faulkner, S., Parry, K., Manyukhina, Y. and Evans, L. (2013) Twitpic-ing the riots: analysing images shared on Twitter during the 2011 UK riots. In: Weller, K., Bruns, A., Burgess, J., Mahrt, M. and Puschmann, C. (2013) Twitter and Society. New York: Peter Lang Publishing Inc., pp. 385-398.

Yoon, J. and Chung, E. (2013) How images are conversed on twitter? Proceedings of the American Society for Information Science and Technology [online]. 50(1), pp. 1-5.

New and notable – selected publications from the Science Communication Unit

The last 6 months have been a busy time for the Unit, we are now fully in the swing of the 2016/17 teaching programme for our MSc Science Communication and PgCert Practical Science Communication students, we’ve been working on a number of exciting research projects and if that wasn’t enough to keep us busy, we’ve also produced a number of exciting publications.

We wanted to share some of these recent publications to provide an insight into the work that we are involved in as the Science Communication Unit.

Science for Environment Policy

Science for Environment Policy

Science for Environment Policy is a free news and information service published by Directorate-General Environment, European Commission. It is designed to help the busy policymaker keep up-to-date with the latest environmental research findings needed to design, implement and regulate effective policies. In addition to a weekly news alert we publish a number of longer reports on specific topics of interest to the environmental policy sector.

Recent reports focus on:

Ship recycling: The ship-recycling industry — which dismantles old and decommissioned ships, enabling the re-use of valuable materials — is a major supplier of steel and an important part of the economy in many countries, such as Bangladesh, India, Pakistan and Turkey. However, mounting evidence of negative impacts undermines the industry’s contribution to sustainable development. This Thematic Issue presents a selection of recent research on the environmental and human impacts of shipbreaking.

Environmental compliance assurance and combatting environmental crime: How does the law protect the environment? The responsibility for the legal protection of the environment rests largely with public authorities such as the police, local authorities or specialised regulatory agencies. However, more recently, attention has been focused on the enforcement of environmental law — how it should most effectively be implemented, how best to ensure compliance, and how best to deal with breaches of environmental law where they occur. This Thematic Issue presents recent research into the value of emerging networks of enforcement bodies, the need to exploit new technologies and strategies, the use of appropriate sanctions and the added value of a compliance assurance conceptual framework.

Synthetic biology and biodiversity: Synthetic biology is an emerging field and industry, with a growing number of applications in the pharmaceutical, chemical, agricultural and energy sectors. While it may propose solutions to some of the greatest challenges facing the environment, such as climate change and scarcity of clean water, the introduction of novel, synthetic organisms may also pose a high risk for natural ecosystems. This future brief outlines the benefits, risks and techniques of these new technologies, and examines some of the ethical and safety issues.

Socioeconomic status and noise and air pollution: Lower socioeconomic status is generally associated with poorer health, and both air and noise pollution contribute to a wide range of other factors influencing human health. But do these health inequalities arise because of increased exposure to pollution, increased sensitivity to exposure, increased vulnerabilities, or some combination? This In-depth Report presents evidence on whether people in deprived areas are more affected by air and noise pollution — and suffer greater consequences — than wealthier populations.

Educational outreach

We’ve published several research papers exploring the role and impact of science outreach. Education outreach usually aims to work with children to influence their attitudes or knowledge about STEM – but there are only so many scientists and engineers to go around. So what if instead we influenced the influencers? In this publication, Laura Fogg-Rogers describes her ‘Children as Engineers’ project, which paired student engineers with pre-service (student) teachers.

Fogg-Rogers, L. A., Edmonds, J. and Lewis, F. (2016) Paired peer learning through engineering education outreach. European Journal of Engineering Education. ISSN 0304-3797 Available from: http://eprints.uwe.ac.uk/29111

Teachers have been shown in numerous research studies to be critical for shaping children’s attitudes to STEM subjects, and yet only 5% of primary school teachers have a STEM higher qualification. So improving teacher’s science teaching self-efficacy, or the perception of their ability to do this job, is therefore critical if we want to influence young minds in science.

The student engineers and teachers worked together to perform outreach projects in primary schools and the project proved very successful. The engineers improved their public engagement skills, and the teachers showed significant improvements to their science teaching self-efficacy and subject knowledge confidence. The project has now been extended with a £50,000 funding grant from HEFCE and will be run again in 2017.

And finally, Dr Emma Weitkamp considers how university outreach activities can be designed to encourage young people to think about the relationships between science and society. In this example, Emma worked with Professor Dawn Arnold to devise an outreach project on plant genetics and consider how this type of project could meet the needs of both teachers, researchers and science communicators all seeking (slightly) different aims.emma-book

A Cross Disciplinary Embodiment: Exploring the Impacts of Embedding Science Communication Principles in a Collaborative Learning Space. Emma Weitkamp and Dawn Arnold in Science and Technology Education and Communication, Seeking Synergy. Maarten C. A. van der Sanden, Delft University of Technology, The Netherlands and Marc J. de Vries (Eds.) Delft University of Technology, The Netherlands. 

We hope that you find our work interesting and insightful, keep an eye on this blog – next week we will highlight our publications around robots, robot ethics, ‘fun’ in science communication and theatre.

Details of all our publications to date can be found on the Science Communication Unit webpages.

 

Postgraduate Science Communication students get stuck in on ‘Science in Public Spaces’

Emma Weitkamp & Erik Stengler

September saw the lecturing staff at the Science Communication Unit welcoming our new MSc Science Communication and PgCert Practical Science Communication students to UWE and Bristol. It also sees the start of our refreshed programme offering, which includes significant changes and updates to two of our optional modules: Science in Public Spaces and Science on Air and On Screen.

The first three-day block of Science in Public Spaces (SiPS) marks the start of a diverse syllabus that seeks to draw together themes around face-to-face communication, whether that takes place in a what we might think of as traditional science communication spaces: museums, science centres and festivals or less conventional spaces, such as science comedy, theatre or guided trails. Teaching is pretty intense, so from Thursday, 29th September to Saturday, 1st October, students got stuck into topics ranging from the role of experiments and gadgets to inclusion and diversity.

Practical science fair

Thursday, 29th September saw the 13 SiPS students matched with researchers from the Faculty of Health and Applied Sciences. Students were introduced to cutting edge research and have been challenged to think about how this could be communicated to the public in a science fair setting. Each student will work with their researcher to create a hands-on activity which they will have the opportunity to deliver to the public at a science fair to be held during a University Open Day in the spring.

Towards the end of the three days a session on creativity generated intense discussion about how we might judge what creativity is through to practical techniques and tips we might use to stimulate creative thinking. The session included a word diamond (McFadzean, 2000), where groups considered how you might foster engagement and enjoyment amongst blind visitors to the Grand Canyon, how blind visitors could be involved in creating a sensory trail (for sighted people) at an arboretum or how to enable a local community to be involved in decision making around land use that involved ecosystem services trade-offs. Challenging topics that draw on learning from earlier in the week.

sips1

After a final session on connecting with audiences, students (and staff) were looking a little tired; three days of lectures, seminars and workshops is exhausting. We hope students left feeling challenged, excited and ready to start exploring this new world of science communication and public engagement and that they find ways to connect their studies with events and activities they enjoy in their leisure time – though that might not apply to the seminar reading!

Science in Public Spaces got off to an excellent start, thanks to the students for their engaged and thoughtful contributions in class. Up next is the Writing Science module, where Andy Ridgway, Emma Weitkamp and a host of visiting specialists will be introducing students to a wide range of journalistic techniques and theories. Then it will be the turn of the new Science on Air and on Screen where Malcolm Love will introduce students to techniques for broadcasting science whether on radio, TV or through the range of digital platforms now open to science communicators. Looks to be an exciting year!

McFadzean, E. (2000) Techniques to enhance creativity. Team Performance Management: An International Journal, 6 (3/4) pp. 62 – 72