Blog Archives

The BIG Picture

Blooms taxonomy

Bloom’s Taxonomy

In July, I travelled to the Centre for Life in Newcastle upon Tyne for the BIG Event – an annual science communication conference organised by the British Interactive Group. The schedule was jam-packed with workshops on a range of topics, from maths and magic to mapping and makery, and I came away buzzing with inspiration and ideas. Here, I reflect on three sessions and consider how these themes influence my science communication practice:


Thinking, doing, talking science

I have young children, so I was interested to learn about ‘Thinking, Doing, Talking Science’ (TDTS) – a programme that aims to make primary school science lessons more practical, creative and challenging and encourage higher-order thinking. Rather than teaching facts, teachers ask ‘big questions’ and the children use their knowledge creatively. Teachers using the approach have found that Year 5 pupils make three additional months’ progress in science, compared with standard teaching practice 1.

The idea of moving away from factual recall comes from educational psychology. It was developed by Dr Benjamin Bloom to promote analytical and evaluation skills and the pyramid of higher-order thinking (see diagram) is known as Bloom’s taxonomy 2.

TDTS shows that children become more confident in science when they are encouraged to ask questions and given the opportunity to think. And there are some easy ways to do this, like the Odd One Out game: choose three random objects and say which is the odd one out and why. Of course, there is no right answer but it’s a great way to practise lateral thinking.

My daughters inspire my blog, which celebrates their curiosity. I don’t have answers to all their questions but Simple Scimum gives us a platform for discussion. Do you know how do mermaids go to the loo? Me neither. But with some higher-order thinking, we think we’ve worked it out!


Over the past decade, ‘impact’ has emerged as a buzzword (see RCUK and HEFCE definitions) to describe the positive effects that academic research can have on the world. And, whilst the concept is becoming normalised in academic practice and research assessment 3 – for example, those who seek Research Council funding must consider Pathways to Impact (i.e. who could benefit from their research and how?) – the potential breadth of impact is vast. By attempting to pin it down, we confer on researchers a responsibility to evaluate and collect evidence of impact. They therefore face a challenge in balancing their scholarly role as teachers, mentors and researchers with their societal role as public intellectuals and ‘impact-makers’.

Thankfully, public engagement is one way to increase research impact. The REF 2014 impact database contains 4,871 case studies with ‘public engagement’ as keywords. And a quick search identified 35 case studies submitted by UWE, including one about engaging with a local patient group to improve leukaemia treatment.

This is great news for me because my role as a Research Fellow is to work with researchers to co-develop projects that engage public audiences with research at UWE, Bristol and to evaluate and analyse the effectiveness of these engagement activities. So far this year, I’ve developed a genetics activity for BoxED and looked at the impact of continuing professional development on science communications practice. I’m also investigating attitudes towards festivals and the effects these events can have on communities, co-designing an approach to create music from bioluminescent bacteria, and visualise what it is like to live with chronic pain.

Not everyone chooses to visit a museum or attend a lecture, so I try to use the everyday ways that people communicate to engage audiences with information about research and make science part of our cultural narrative. For my collaborators, I hope the impact will be in raising the profile of their research, thinking about how it can be informed by the experiences of those outside academia, and celebrating the outcomes and benefits with a public audience.


It is suggested that we live in a ‘post-truth’ era in which objective facts have a lesser influence on public opinion than appeals to emotion and personal beliefs. And if believing is more important than fact-checking, ‘alternative facts’ that undermine established theories can gain currency. But attempting to redress this by flooding people with evidence is not the answer – indeed, it can make things worse as people become more closely anchored to their core beliefs and align themselves with those with similar views 4.

But what if science curiosity could counteract biased information processing 5 ? Perhaps our role as science communicators is to make science part of public culture and cultivate curiosity, rather than to educate public audiences about scientific issues? And if we can do this by making emotional connections with our audiences and drawing on lived experiences, so much the better.

Maybe we should learn from the TDTS programme and develop innovative and creative communications that promote higher-order thinking across all audiences? And what if this encourages critical thinking and normalises scientific literacy in everyday life. Just think what impact that could have…

Kate Turton



  2. Adams, N. E. (2015) Bloom’s taxonomy of cognitive learning objectives. J. Med. Libr. Assoc. 103(3) p152-153
  3. Wilkinson C. (2017) Evidencing impact: a case study of UK academic perspectives on evidencing research impact. Studies in Higher Education.
  4. Broks, P. (2017) Science communication: process, power and politics. JCOM. 16(4), C02
  5. Kahan, D. M. et al (2017) Science Curiosity and Political Information Processing. Advances in Political Psychology. 38, Suppl 1 p179-199