Blog Archives

Welcoming Hannah Little, new lecturer in the Science Communication Unit

My name is Hannah Little. I’m a new lecturer at the Science Communication Unit. I will be teaching Science Communication at foundation, undergraduate and postgraduate levels, specially focussing on areas in digital communication.

Previously, I have worked professionally in science communication, primarily coordinating the STEM Ambassador and Nuffield Research Placement programmes in the North East of England. I have come to the Science Communication Unit after completing a PhD at the Artificial Intelligence Lab at the VUB in Belgium, and a PostDoc at the Max Planck Institute for Psycholinguistics. My work throughout both my PhD and PostDoc was primarily on the evolution of linguistic structure. One method I have used in my research is cultural transmission experiments in the lab.

These experiments investigate how language (or any behaviour) is changed as a result of being passed from one mind to another in a process similar to the game “Telephone”. One person’s output becomes the input for a new person, whose output is fed to a new person and so on! This method is being used more and more to look at processes of cultural evolution, and I am interested in using these methods to investigate processes in science communication.

Norman Rockwell

Norman Rockwell (1894-1978), “The Gossips,” 1948. Painting for “The Saturday Evening Post” cover, March 6, 1948.

 

I see existing work in cultural evolution fitting into science communication in 3 main areas:

Science Writing

Using experiments to investigate how stories and information are culturally transmitted isn’t new. As far back as 1932, Bartlett’s book “Remembering” describes experiments that looked at how transmission of a memory from one person to another can affect what information persists, and what is forgotten through a failure in the transmission process. More recently, Mesoudi et al. (2006) used similar experiments to systematically investigate whether information is transmitted more faithfully when it is embedded in a narrative around social interactions compared to equivalent non-social information. I am keen to explore these findings in practical contexts in science communication, for instance looking at how well information persists from scientific article to press release to media story as a result of different types of content in a press release.

Digital Communication

The internet is the home of the “meme” a culturally transmitted idea (this could be any idea, picture, video, gif or hashtag). New methods from big data analysis are being used by scholars interested in cultural evolution to explore the proliferation of memes, and this is even starting to happen in science communication too. Veltri & Atanasova (2015) used a database of over 60,000 tweets to investigate the main sources of information about climate change that were proliferated on twitter and the content of tweets that were most likely to be retweeted. They found that tweets and text with emotional content was shared more often. These findings fit with the findings from Mesoudi et al. (2006) above, demonstrating that multiple sources and methods can be used to accumulate evidence on what it is that allows scientific information to be a) transmitted in the first place, and b) transmitted faithfully.

Hands-on science activities

Another hot topic in cultural transmission is the role of innovation and creativity in the transmission of information resulting in an accumulation of information. Caldwell and Millen (2008) investigated this process using an experiment whereby participants were asked to build the tallest tower possible using just dried spaghetti and blue tack, or the paper aeroplane that flew the furthest. Participants were able to see the attempts of people who had gone before, giving them the option to copy a design that had already been tried, or innovate a new design. The study found that participants got better at building successful towers and aeroplanes later in transmission chains than earlier, indicating that successful engineering skills were being acquired just from the process of cultural transmission. This, of course, is a brilliant finding in its own right, but there is a huge amount of scope for using this paradigm to investigate what affects cumulative cultural evolution in the context of issues relevant to science communication. For example, does explicit learning or simple imitation affect rates of innovation and success? This question has previously been explored using cooking skills in Bietti et al. (2017) and paper aeroplanes in Caldwell & Millen (2009). You can also use these methods to investigate questions about whether the characteristics of the person transmitting the information plays a role in faithful transmission or innovation (e.g. their gender, age, perceived authority, etc.).

Together, I think these case studies of existing literature outline the scope of methods and insight available from the field of cultural evolution to questions in science communication, and I look forward to working with the unit at UWE to generate some new research in these areas!

Hannah Little

References

Bartlett, F. C. (1932). Remembering. Cambridge: Cambridge University Press.

Bietti, L.M., Bangerter, A., & Mayor, E. (2017). The interactive shaping of social learning in transmission chains. In G. Gunzelmann, A. Howes, T. Tenbrink & E.Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (pp. 1641-1646) Austin, TX: Cognitive Science Society.

Caldwell, C. A., & Millen, A. E. (2008). Experimental models for testing hypotheses about cumulative cultural evolution. Evolution and Human Behavior, 29(3), 165-171.

Caldwell CA & Millen A (2009) Social learning mechanisms and cumulative cultural evolution: is imitation necessary?, Psychological Science, 20 (12), pp. 1478-1483.

Mesoudi, A., Whiten, A. & Dunbar, R. (2006) A bias for social information in human cultural transmission. British Journal of Psychology 97(3), 405-423.

Veltri, G. A., & Atanasova, D. (2015). Climate change on Twitter: Content, media ecology and information sharing behaviour. Public Understanding of Science, 0963662515613702.

Never say never again…

After my PhD viva in 2004, I promised myself I’d never again study for a qualification. Having gone straight from A-levels through a degree to a doctorate, I felt as if I just couldn’t learn anything more. But a decade later, I found myself at a career crossroads trying to figure out what to do at the end of my maternity leave.

Inspired by my elder daughter’s curiosity, I set up a blog, Simple Scimum, to answer questions about science and nature. Slowly, as the blog gathered followers, my confidence grew; and when one of my daughter’s friends asked if I would answer her science questions too, I knew I had to turn science writing into something more than a hobby.

I began searching for jobs that involved writing about science and quickly realised that a qualification in science communication would be an advantage. So, I googled ‘sci comm Bristol’ and found UWE’s MSc in Science Communication, which sounded brilliant but was more than I could manage whilst working part-time and looking after two young children. However, the Postgraduate Certificate in Practical Science Communication was exactly what I was looking for: a one-year, part-time course with intensive teaching blocks, offering hands-on experience and links to industry. I applied for the September 2016 intake and won a bursary towards my tuition fees: I was going back to university!

I felt nervous about returning to study after such a long break but I knew that this was just the first step along a new career path.

The ‘Writing Science’ module was an obvious choice, with the opportunity to create a magazine and develop a portfolio just too good to miss. I learned the essential elements of journalistic practice and wrote a bylined article for UWE’s Science Matters magazine. But the real highlight was a three-hour workshop on ‘how to write a book’ – I’d love to write science storybooks for children, and came away bursting with ideas, enthusiasm and an action-plan to turn my dream into reality. (Roll on NaNoWriMo…!)

But it was through the ‘Science in Public Spaces’ module that I discovered just how strongly I want to inspire young children and engage them with research. I designed ‘Simon’s Box’ to talk about genetic disease and genome editing with GCSE pupils in local schools. And I had the best time in the Explorer Dome learning about science shows for young audiences. Seeing how to encourage children to learn through stories and play was a fantastic experience and a seminal moment in my desire to become a science communicator.

At times I found it hard to juggle study, work and childcare but the intensive teaching blocks made it easier for me to attend lectures and workshops. I paid for my younger daughter to go to nursery for an extra morning each week and used that time for reading and research. Still, I often found myself studying between 8pm and 10pm, when the kids were tucked up in bed, and I was grateful for 24-hour online access to UWE’s library facilities. But now the hard work is over and I’m just waiting for my final results.

Over the past year, I’ve been part of a supportive cohort of students who are committed to science communication. I’ve developed the confidence to pursue a new career path and given up my old job to become a Research Fellow in UWE’s Science Communication Unit. Before the PGCert, I dreamed of working in science communication but now I’m actually doing it.

Kate Turton