Blog Archives

The BIG Picture

Blooms taxonomy

Bloom’s Taxonomy

In July, I travelled to the Centre for Life in Newcastle upon Tyne for the BIG Event – an annual science communication conference organised by the British Interactive Group. The schedule was jam-packed with workshops on a range of topics, from maths and magic to mapping and makery, and I came away buzzing with inspiration and ideas. Here, I reflect on three sessions and consider how these themes influence my science communication practice:

 

Thinking, doing, talking science

I have young children, so I was interested to learn about ‘Thinking, Doing, Talking Science’ (TDTS) – a programme that aims to make primary school science lessons more practical, creative and challenging and encourage higher-order thinking. Rather than teaching facts, teachers ask ‘big questions’ and the children use their knowledge creatively. Teachers using the approach have found that Year 5 pupils make three additional months’ progress in science, compared with standard teaching practice 1.

The idea of moving away from factual recall comes from educational psychology. It was developed by Dr Benjamin Bloom to promote analytical and evaluation skills and the pyramid of higher-order thinking (see diagram) is known as Bloom’s taxonomy 2.

TDTS shows that children become more confident in science when they are encouraged to ask questions and given the opportunity to think. And there are some easy ways to do this, like the Odd One Out game: choose three random objects and say which is the odd one out and why. Of course, there is no right answer but it’s a great way to practise lateral thinking.

My daughters inspire my blog, which celebrates their curiosity. I don’t have answers to all their questions but Simple Scimum gives us a platform for discussion. Do you know how do mermaids go to the loo? Me neither. But with some higher-order thinking, we think we’ve worked it out!

Impact

Over the past decade, ‘impact’ has emerged as a buzzword (see RCUK and HEFCE definitions) to describe the positive effects that academic research can have on the world. And, whilst the concept is becoming normalised in academic practice and research assessment 3 – for example, those who seek Research Council funding must consider Pathways to Impact (i.e. who could benefit from their research and how?) – the potential breadth of impact is vast. By attempting to pin it down, we confer on researchers a responsibility to evaluate and collect evidence of impact. They therefore face a challenge in balancing their scholarly role as teachers, mentors and researchers with their societal role as public intellectuals and ‘impact-makers’.

Thankfully, public engagement is one way to increase research impact. The REF 2014 impact database contains 4,871 case studies with ‘public engagement’ as keywords. And a quick search identified 35 case studies submitted by UWE, including one about engaging with a local patient group to improve leukaemia treatment.

This is great news for me because my role as a Research Fellow is to work with researchers to co-develop projects that engage public audiences with research at UWE, Bristol and to evaluate and analyse the effectiveness of these engagement activities. So far this year, I’ve developed a genetics activity for BoxED and looked at the impact of continuing professional development on science communications practice. I’m also investigating attitudes towards festivals and the effects these events can have on communities, co-designing an approach to create music from bioluminescent bacteria, and visualise what it is like to live with chronic pain.

Not everyone chooses to visit a museum or attend a lecture, so I try to use the everyday ways that people communicate to engage audiences with information about research and make science part of our cultural narrative. For my collaborators, I hope the impact will be in raising the profile of their research, thinking about how it can be informed by the experiences of those outside academia, and celebrating the outcomes and benefits with a public audience.

Post-truth

It is suggested that we live in a ‘post-truth’ era in which objective facts have a lesser influence on public opinion than appeals to emotion and personal beliefs. And if believing is more important than fact-checking, ‘alternative facts’ that undermine established theories can gain currency. But attempting to redress this by flooding people with evidence is not the answer – indeed, it can make things worse as people become more closely anchored to their core beliefs and align themselves with those with similar views 4.

But what if science curiosity could counteract biased information processing 5 ? Perhaps our role as science communicators is to make science part of public culture and cultivate curiosity, rather than to educate public audiences about scientific issues? And if we can do this by making emotional connections with our audiences and drawing on lived experiences, so much the better.

Maybe we should learn from the TDTS programme and develop innovative and creative communications that promote higher-order thinking across all audiences? And what if this encourages critical thinking and normalises scientific literacy in everyday life. Just think what impact that could have…

Kate Turton

******

References

  1. https://educationendowmentfoundation.org.uk/public/files/Publications/Campaigns/Evaluation_Reports/EEF_Project_Report_Thinking__Doing__Talking_Science.pdf
  2. Adams, N. E. (2015) Bloom’s taxonomy of cognitive learning objectives. J. Med. Libr. Assoc. 103(3) p152-153
  3. Wilkinson C. (2017) Evidencing impact: a case study of UK academic perspectives on evidencing research impact. Studies in Higher Education. http://dx.doi.org/10.1080/03075079.2017.1339028
  4. Broks, P. (2017) Science communication: process, power and politics. JCOM. 16(4), C02
  5. Kahan, D. M. et al (2017) Science Curiosity and Political Information Processing. Advances in Political Psychology. 38, Suppl 1 p179-199

Engineering in Society – new module for engineering citizenship

Undergraduate student engineers at UWE Bristol will get the chance to learn about engineering citizenship from September.

The Science Communication Unit is launching a new module to highlight the importance of professional development, lifelong learning, and the competencies and social responsibilities required to be a professional engineer.

It follows a successful public engagement project led by Laura Fogg-Rogers in in 2014, called Children as Engineers. The new module is being funded by HEFCE to advance innovation in higher education curricula.

The 65 students, who are in the third year of their BEng or MEng degrees, will learn about the engineering recruitment shortfall and the need to widen the appeal of the profession to girls and boys. They will then develop their communication and public engagement skills in order to become STEM Ambassadors for the future.

The module is unique in that it pairs the student engineers with pre-service teachers taking BEd degrees on to be peer mentors to each other. The paired students will work together to deliver an engineering outreach activity in primary schools, as well as respectively mentoring each other in communication skills and STEM knowledge.

The children involved in the project will present their engineering designs back to the student engineers at a conference at UWE in 2018. Previous research shows that it positively changes children’s views about what engineering is and who can be an engineer .

Teacher Asima Qureshi of Meadowbrook Primary school in Bradley Stoke says;

“The Children as Engineers Project was a very successful project in our school. The highlight was the opportunity to showcase their designs at the university and be able to explain the science behind it. It has hopefully inspired children to become future engineers.”

The pilot project was also successful at improving teachers’ STEM subject knowledge confidence and self-efficacy to teach it. This is vitally important, as only 5% of primary school teachers have a higher qualification in STEM, and yet attitudes to science and engineering are formed before age 11.

curiosity connectionsProfessional engineers in the Bristol region are invited to learn from the project and mentor the students as part of the new Curiosity Connections Bristol network . Delegates are welcome to attend the inaugural conference on November 23rd 2017 to share learning with other STEM Ambassadors and professional teachers in the region.

Laura Fogg-Rogers, University of the West of England (UWE) Bristol UK